
SOA and Gouvernance

Th.Moineau – Thierry@lesMoineau.fr

What is SOA ?

There is, today, no standard definition of Service Oriented Architecture (SOA). 

From a technical point of view, SOA is a set of technologies coming from the web world 
and enabling invocation of IT services over Internet : the famous Web Services. More 
precisely, web services are implemented by a provider, are deployed on some machines 
and their availability is published in a catalogue. A consumer can then find them in the 
catalog and use their description to start interacting with the Provider.

So far nothing new (computer have been communicating for a long time – aren’t they ?). 
The revolution is that the interactions are based on standard and simple technologies: 
XML messages and SOAP protocol over a network, which can be the Internet. This 
provides the ability of interactions between computers using different technologies (e.g. 
Java vs .Net) possibly from different enterprises – all of that without the usually long and 
costly technical integration testing phase.

Process

Business Service

mediation

360º MMI

Portal

ESB

Legacy
Applications

Application Server

Centre 1 Centre 2
A

B

D

B

C

D

A

C

E

N60806B 5/1

Catalog publish

interact

Consumer Provider

search

mailto:Thierry@lesMoineau.fr


From a larger Information System point of view, SOA is an enterprise architecture 
paradigm promising significant reduction of IT maintenance costs. 

It aims at moving away from the previous silo-based IT systems (business processes 
delivered through custom applications running on separate sets of computers and data 
bases) and their well-known issues of code redundancies, data duplication and 
inconsistencies. 

SOA promotes a 3-layers architecture: a layer of business services, a layer where the 
business processes are implemented and a man-machine interface. 
The business services encapsulate the business data and their fundamental behavior. They 
are meant to be used by all the business processes, without discrimination, in order to 
avoid the “silo-effect”. 
The man-machine interface is not anymore structured by applications but is based on 
business activities and processes, giving the user a 360º view on the information relevant 
to his/her work.

SOA is not technology (not only …)

This looks nice and good and … very technology oriented.

The good/bad news is that, although there are significant technology issues behind SOA, 
the main problems today are: methodology and governance.

That’s what we learned from several large IT system refactoring programs based on 
Entreprise Architecture and SOA paradigms (including the Copernic program, which aims 
at a complete refactoring of the entire fiscal IT system : 9 years duration, more than 
1000 people within 70 projects and a budget of 900 million Euros - this is probably to date 
the largest IT system fully implemented according to the SOA paradigm).

Need for transversal Governance structure

Functional
Governance Technical

Governance

processes

Services ServicesCon
tra

cts

processes

Reusable
Services Consistency

Tests &
validation

Better comfort, efficiency and accuracy for the end users, easier maintenance and lower 
IT costs : this looks like a target that everybody in any company should be happy to seek 
for.

From our experience, this is not the case.

N60806B 5/2



First, the business processes are defined by the various business units within the company 
and this makes sense, as these business units are the owners of the processes. There is 
however no reasons that business units working independently come up with common 
reusable services. Indeed, as stated by the French poet, what the processes need are “not 
utterly different each time, not utterly the same”. Without a team responsible to identify 
these reusable services, they will never exist (identifying the reusable business services is 
a very complex task, which would request an separate article later). Regarding the 
specification of the reusable business services, we found out that relying only on a central 
team is not a good solution. Indeed the amount of detailed business knowledge needed 
for that would require a huge team and this team rapidly becomes a bottleneck. As most 
services, albeit reusable across several business units, are naturally closer to one of the 
business unit, our solution is to have the central team to specify the few services really 
central and to distribute the other services across the business units.

Then, this central team has to convince the business unit to use these business services ; 
this means that they have to re-design their business processes according to the reusable 
business services. Now let’s face the real world, the business units usually have very few 
incentives to do so. Indeed changing a business process is costly for the business unit and 
if it does create some economy, this is often at company level only and not at the business 
unit level. Hence this central team must have a very active support from a very high level 
within the company management.

This is what we call functional governance.

At technical level, we envisioned two management structure : (a) a central team 
implements all the reusable business services and (b) the services are distributed among 
the business units. In both case, the business processes are implemented by the business 
units.

The second solution proved more efficient, but requires strong technical governance. 
Otherwise each business unit would use its own paradigm - for instance, some use RPC 
style interactions while others use document style interactions, some use session-less 
transactions while others use stateful transactions, etc. The developers of the business 
processes would then be faced with a diversity of approach to understand and master. 
Our experience is that they get rapidly confused, which leads to both a significant number 
of bugs and potentially to a reject of the approach.

Hence, we recommend that a central team defines and develop a set of architectural rules 
and guidelines together with technical prescriptions. 

This is what we call technical governance.

The next issue is related to integration and validation of the reusable business services 
implementation. The idea, which comes first to mind, is to have the team who specified 
the service to validate the implementation. This is not perfect as this requires building a 
complete testing environment, which can be very complex and expensive. On the other 
hand, one can ask the clients of the services to validate it, i.e. the developers of the 
business process. This is not perfect either as it easily leads to duplication of tests and to 
delaying the validation (because not all business processes arrive at the same time). Our 
recommendation is to have a mix : some basic testing and validation by the specification 

N60806B 5/3



team and more thorough testing by a few selected business process developers. The 
appropriate selection of the tester is a key success factor.

The five views of the Information System

One of the key question we had to face in the Copernic program is “who does what ?”.

Indeed, moving from a vertical silo-based architecture to a layered service oriented 
architecture proved to be a complete mental shift for most participants of the program. If 
not taken care of, it quickly leads to confusion and potentially blockage of the program 
(when you ear end-users arguing about the format of the WSDL, then you know that you’ll 
soon be in trouble).

Business users

Functional 
architects

Application 
developers

IT operations

To avoid this confusion, we have used and adapted a method to describe the information 
system according to five views (which forms a cube – the sixth face is used to pose it on 
one’s desk).

The first view is the Strategy view. This view describes the strategic objectives of the 
enterprise in term of business and in term of its information system. All the decisions 
made in the other views must be related to one of the objectives in the strategy view. 

The Business view describes the business processes and business activities, independently 
from the internal structure of information system. This is the view in which live the end 
users. 

The Functional view aims at structuring the information system into processes and 
business services. This view, which is not meant to be seen by end users, is essential for 
the efficiency and the maintainability of the information system. This view should be as 
independent as possible from the technology and technical aspects of the IT system. This 
is the view in which live the functional architects.

The Application view aims at implementing the functional specification into an IT system. 
This view deals with application modules and technology choices. This is the view in which 
live the technical architects and the application developers.

N60806B 5/4



The infrastructure view contains the description of the IT physical infrastructure of the 
company (computers, networks, …). This is the view in which live the IT operations.

We found out that it is important to avoid hierarchical relationships between the objects in 
the views, because such relationships tend either to recreate the silo-based architecture or 
to lead to a confusion of the roles between the actors (e.g. end-users arguing about SOAP 
encoding rules). Of course consistency rules must be ensured (for instance a machine in 
the infrastructure view may host several application modules from the application view 
and vice-versa an application module may be deployed on several machines – but the 
amount of memory required by all the modules on a machine must be compatible with the 
physical memory in this machine).

We have defined the interactions between the actors in the different views. We found out 
that it is critical to close the complete loop through a service level agreement between the 
business users and the IT operations. 

After 2 years of using this gouvernance model, we found this 5 views approach very 
valuable for the deployment of a SOA-based architecture – definitely more appropriate 
than the usual layered approaches.

N60806B 5/5


